Design of a Passive Upper Limb Exoskeleton for Macaque Monkeys

نویسندگان

  • Junkai Lu
  • Kevin Haninger
  • Wenjie Chen
  • Suraj Gowda
  • Masayoshi Tomizuka
  • Jose M. Carmena
چکیده

Integrating an exoskeleton as the external apparatus for a brain–machine interface (BMI) has the advantage of providing multiple contact points to determine body segment postures and allowing control to and feedback from each joint. When using macaques as subjects to study the neural control of movement, an upper limb exoskeleton design with unlikely singularity is required to guarantee safe and accurate tracking of joint angles over all possible range of motion (ROM). Additionally, the compactness of the design is of more importance considering macaques have significantly smaller body dimensions than humans. This paper proposes a six degree-of-freedom (DOF) passive upper limb exoskeleton with 4DOFs at the shoulder complex. System kinematic analysis is investigated in terms of its singularity and manipulability. A real-time data acquisition system is set up, and system kinematic calibration is conducted. The effectiveness of the proposed exoskeleton system is finally demonstrated by a pilot animal test in the scenario of a reach and grasp task. [DOI: 10.1115/1.4033837]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of the robotic exoskeleton for upper-extremity rehabilitation

This paper touches upon the issue of designing of an upper-limb exoskeleton used for rehabilitation. Mainly there are presented the results concerning the mechanical design. The exoskeleton, also known as orthosis, has 12 degrees of freedom (DOF). Among 12 DOF there can be distinguished 7 DOF which are actively controlled during rehabilitation, 3 passive DOF which are responsible for wrist move...

متن کامل

Passive exoskeletons for assisting limb movement.

This article presents the state of the art in passive devices for enhancing limb movement in people with neuromuscular disabilities. Both upper- and lower-limb projects and devices are described. Special emphasis is placed on a passive functional upper-limb orthosis called the Wilmington Robotic Exoskeleton (WREX). The development and testing of the WREX with children with limited arm strength ...

متن کامل

ارزشیابی وضعیت انجام کار به روش RULA در یکی از صنایع خودرو- نیروی محرکه با هدف طراحی موثر سیستم کمک حرکتی اگزواسکلتال

  Background and aims : physical activities in occupations like handling, static and dynamic postures, sudden movements, and repetitive postures are amongst most important risk factors of Work related Musculoskeletal Disorders (WMSDs). There are many ergonomic methods for assessing WMSDs which can be used in different cases, but these assessments and analyses can not be beneficial by themselves...

متن کامل

A Study on Human Upper-Limb Muscles Activities during Daily Upper-Limb Motions

Human upper-limb involves for many daily human activities. The human intention for upperlimb motions can be estimated based on the activation pattern of upper-limb muscles. The upper-limb muscle activities during the daily upper-limb motions have been studied to enable power-assist robotic exoskeleton systems to estimate human upper-limb motions based on muscle electromyographic (EMG) signals. ...

متن کامل

JRRD At A Glance

We discuss state-of-the-art passive devices for enhancing upperand lower-limb movement in people with neuromuscular disabilities. Special emphasis is placed on a passive functional upper-limb orthosis called the Wilmington Robotic Exoskeleton (WREX). It is exoskeletal, has two links and four degrees of freedom, and uses linear elastic elements to balance the effects of gravity in three dimensio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016